Blockchain Turbulences: From
Trust to Censorship Resistance

Davor Svetinovic
Khalifa University, EECS, Abu Dhabi UAE
and Vienna University of Economics and Business, Austria

Director/Head Research Institute for Cryptoeconomics

Outline

* Welcome and introduction to the presentation
* Overview of our current work
* Importance of trust and censorship resistance in blockchain systems

 Combination of blockchain, Al, and loT

All credit goes to amazing students and collaborators who contributed
to the work discussed in the presentation!

Improving Cryptocurrency Crime Detection: CoindJoin Community Detection

Approach

Publisher: IEEE

Cite This

PDF

Anton Wahrstétter ; Jordo Gomes ; Sajjad Khan ; Davor Svetinovic® All Authors

147
Full

Text Views

Abstract
Authors
Keywords

Metrics

Abstract:

The potential of Bitcoin for money laundering and terrorist financing represents a significant challenge in law enforcement. In
recent years, the use of privacy-improving CoinJoin transactions has grown significantly and helped criminal actors obfuscate
Bitcoin money flows. In this study, we use unsupervised machine learning to analyze the complete Bitcoin user graph in order
to identify suspicious actors potentially involved in illegal activities. In contrast to the existing studies, we introduce a novel set
of features that we use to identify potential criminal activity more accurately. Furthermore, we apply our clustering algorithm to
a CoinJoin-adjusted variant of the Bitcoin user graph, which enables us to analyze the network at a more detailed, user-centric
level while still offering opportunities to address advanced privacy-enhancing techniques at a later stage. By comparing the
results with our ground truth data set, we find that our improved clustering method is able to capture significantly more illicit
activity within the most suspicious clusters. Finally, we find that users associated with illegal activities commonly have
significant short paths to CoinJoin wallets and show tendencies toward outlier behavior. Our results have potential contributions
to anti-money laundering efforts and combating the financing of terrorism and other illegal activities.

Published in: IEEE Transactions on Dependable and Secure Computing (Early Access)

Page(s): 1- 11 DOI: 10.1109/TDSC.2023.3238412

Date of Publication: 20 January 2023 @ Publisher: |IEEE

TL;DR

* lsing information about Coindoins to identity criminal entities more accurately on Bitcoin

Parse local data of Full Node

« Set up Full Node using Bitcoin-core Client

« Parse the blk*****.dat files for transactions using forked parser
« Sample block of 1st blk-file (Genesis block):

2888
)

-

J00EffFfFFff4d04£f£f£f£f001d0104455468652054696d65732030332f4a616e2£323030392043686 63656c6c6f72206£F

1365636f6e64206261696c6f757420666£722062616e6b73ffffffff0100£20522010000004341046

e€0390%a67962e0ealf6ldeb649f6bc3f4cef38c4£35504e51ecll12deS5c384df7balb8d578a4c702b6bf11d5£fac00000000

Data aquisition

Full Node
Forked python-blockchain-parser.qit ==> python-bitcoin-graph.git
e https://qithub.com/Nerolation/python-bitcoin-graph (example)

(btc) S python3 run.py -loc "./.bitcoin/blocks" -collectvalue -collectblk --help
usage: run.py [-h] [-sf STARTFILE] [-ef ENDFILE] [-st STARTTX] [-et ENDTX] [-ets ENDTS] [-loc BLKLOCATION] [-path TARGETPATH] [-collectvalue]
[-bucket BUCKET] [-c CREDENTIALS] [-project PROJECT] [-ds DATASET] [-tid TABLEID]

optional arguments:
-h, --help show this help message and exit
-sf STARTFILE, --startfile STARTFILE .blk start file (included) - default: blke0ee0.dat
-ef ENDFILE, --endfile ENDFILE .blk end file (excluded) - default: None
-st STARTTX, --starttx STARTTX start transaction id (included) - default: None
-et ENDTX, --endtx ENDTX end transaction id (excluded) - default: None
-ets ENDTS, --endts ENDTS end timestamp of block - default: None
-loc BLKLOCATION, --blklocation BLKLOCATION .blk|.csv file location - default: ~/.bitcoin/blocks
-path TARGETPATH, --targetpath TARGETPATH path to store raw edges locally - default: ./
-collectvalue, --collectvalue collect output values - default: No
-collectblk, --collectblk collect blk file numbers with every edge - default: No
-upload, --upload upload edges to google bigquery - default: False
-parquet, --parquet use parquet format - default: False
-mp, --multiprocessing use multiprocessing - default: False
-ut UPLOADTHRESHOLD, --uploadthreshold UPLOADTHRESHOLD uploading threshold for parquet files - default: 5
-bucket BUCKET, --bucket BUCKET bucket name to store parquet files - default: btc_<timestamp>
-c CREDENTIALS, --credentials CREDENTIALS path to google credentials (.*json)- default: ./.gcpkey/.*json
-project PROJECT, --project PROJECT google cloud project name - default: btcgraph
-ds DATASET, --dataset DATASET bigquery data set name - default: btc
-tid TABLEID, --tableid TABLEID bigquery table id - default: bitcoin_transactions

https://github.com/Nerolation/python-bitcoin-graph
https://asciinema.org/a/458061

Data acquisition — Google BigQuery

Table schema

‘= Filter Enter property name or value

Field name Type Mode

ts TIMESTAMP NULLABLE
txhash STRING NULLABLE
input_txhash STRING NULLABLE
vout INTEGER NULLABLE
output_to STRING NULLABLE
output_index INTEGER NULLABLE
value INTEGER NULLABLE
blk_file_nr INTEGER NULLABLE

Row

1

2

3

ts txhash

2009-01-1202:30:25 UTC ~ f4184fc596403b9d638783cf57adfedc75c605f6356fbc91338530€9831e€9e16

2009-01-1206:16:40 UTC ~ 4385fcf8b14497d065%dccfe0bae/e38e0b5dc95ff8a13d7¢62035994a0cd79

2009-01-1213:21:00 UTC 298ca2045d174f8a158961806ffc4ef96fad02d71a6b84d9fa0491813a776160

input_txhash

vout

0437cd7f8525ceed2324359¢2d0ba26006d92d856a9¢c20fa0241106ee5a597¢9 0

12b5633bad1f9c167d523ad1aa1947b2732a865bf5414eab2f9e5ae5d5¢191ba 0

591e91f809d716912ca1d4a9295e70c3e78bab077683f79350f101da64588073 0

output_to

output_index

1Q2TWHE3GMdB6BZKafqwxXtWAWgFtSJvm3 0

15NUwyBYrZcnUgTagsm1A7M2yL2GntpuaZ

1BDvQZjaAJH4ecZ8al 3fYgTi7rnn302thE

0
0

value
1000000000
100000000

100000000

blk_file_nr
0
0
0

Data preprocessing — Google BigQuery

Input/Output Mapping:

Input: Non-mapped Transaction Graph
ERAW = {(TCUID, INTwIDa INVouta OUTAddress and

OUTInde:B) 7o } g T
Output: Set of edges F = { (I N adgdresss OUT address) , - - - } ! -1 Inputs Outputs :
. edQQSE(—empty Set@ § E 1 smmmmn E

1

2: foralle € Egaw do R : T

3 er—1 4 {ei...ej} | INzip(e) = TaxlD(e;) : 0
4 utro <—e | INVout(e) - OUTInde:c(et—l)

5 E += {OUTAddress (ua:to), OUTAddress(e>}
6: end for

7: return FE

10

Data preprocessing — Google BigQuery

Coindoin detection (Wasabi):
« Block heigth 530,500 - 609,999
« 2 static coordinator addresses
« Since block height 610,000
« Tx Output Values contain at least 10 equal values
 Most frequent output value equals 0.1 BTC £ 0.02 BTC
 More Inputs than Outpus of equal values
* One unique Output Value
« 3 distinct Output Values
« Bech32 addresses
« NOT IF:
* Input Addresses != Output Addresses
« Output Values between 0.08-0.085, 0.115-0.12 or
exactly 0.09 or 0.1

Data preprocessing — Google BigQuery

Coindoin detection (Samurai):
« Since block height 570,000:
5 lnputs
« 5 Outputs
« At least 1 and at most 3 equal Input Values that match a
pool size — the rest is in the range poolsize £ 0.0011 BTC

 Pool sizes:
0.001 BTC
0.01 BTC
0.05 BTC
0.5 BTC

Clustering — Google BigQuery

Cluster #2 @

Cluster #1

IIIIIIIIIIIIIIIIIII

o —————— — — — — — — — — — — — —

lllllllllllllllllll

16

K-Means Analysis

Dividing users into 100 k-means clusters using the follwoing features:

Turnover-features:
* Total amount received,
* Total amount sent,
e Avg. amount received,
. Avg. amount sent

Connectivity-features:
. In-degree,
. Out-degree,
* Total-degree,
* Shortest-Path to CoinJoin transaction

Activity-features:
* Activity period in days,
* avg. hour of activity,
* degree per active day

Utxos-specific-features:
* Avg. age of Utxos in days,
 final balance in BTC

Analysis

|
1074+ + exchange (14 + 40) |

v crime (46)

e miner (87)

10°
3
'
S
hd &
S 10.& 4

10" 1

10! 10% 10° 107
out degree

3.00e+06
2.00e+04
1.50e+02
0

out degree

3.00e+06
2.00e+404

~ 1.50e+02
miner 0 &

cxchange
crime

A dif ference

identi fied crime

1o
o

[U¥]
o

B advanced features

S~}
(a]

—
o

BN standard features
T
10 20 30
10 20 30

k — means clusters

22

Analysis

K-Means Cluster ids with the most identified users of the categories crime (46-39), exchange (14-93) and miner (7-87). The identified measure
tells how many services/entities of the respective category we were able to identify from the ground truth data set. For example, within the cluster
with the id 46 we identified 45 different services that were labeled crime.

.- 4d | _out.degree | in degree_|_total degree_| acti\r_e_days_: ~degree/active day | fotal amount received._ | avg amount received. -
i 46 126 31 157 34 ! 2.30 I 1,341,893,825 385,899,462 i

4 30 22 52 11 [234 : 4,608,143,763 700,231,216

13 17 11 28 123 : 1.89 : 882,592,602 554,798,252

39 5 5 10 9 : 228 I 1,074,169,522 731,787,073

14 623 366 989 19 : 2.68 ! 306,490,213,308 806,156,543

40 347 270 617 45 I 7.33 ! 227,735,226,561 58,337,174,815

93 7, 17 24 4 ! 15.30 : 843,569,064 617,765,779

87 6 6 11 8 . 27 : 7,931,131,789 6,295,672,191

49 5 5 10 7 : 2.84 [3,896,333,630 2,891,014,513

74 3 3 6 O I 261 _ _ _. 1,209,110,525 1,003,317,080

TABLE 3

crime (46-39), exchange (14-93) and miner (7-87).

__id | _total amount sent | avg amount sent | utcycrive | final balance | utxoage [shortest pathto CJ' | identified | cluster size
| 746 | 1,031,250,101 230,751,349 12 2,461,562 3| 278 T 45 1267320 !

4 4,646,407,102 348,898,093 12 4,370,580 215 | 3.57 ! 33 8,341,798

13 876,187,417 295,531,546 12 7,947,454 62 | 3.06 | 32 3,698,687

39 | 1,077,985,797 370,146,805 12 3,449,235 255 | 3.65 : 15 7,237,207

14 [305,526,521,897 398,150,196 12 291,499,451 219 | 3.52 : 35 1,392,551

40 | 226,333,624,912 31,084,918,008 {7 2,001,274 126 | 3.26 ! 31 358,716

93 954,548,147 294,456,527 12 10,738,269 59 | 3.03 | 7 3,591,987

87 | 8,147,243,858 3,381,518,584 12 2,276,419 102 | 3.34 | 22 2,786,947

49 | 3,875,128,428 1,545,644,518 1 9,229,881 9% | 3.33 : 13 1,994,675

7 1,207,236,399 517,160,946 12 7,232,830 86 | 3.33 : 9 4,909,275

23

Analysis

Findings:

The shortest path to CJ feature improves unsupervised

clustering --> We concentrated more criminal entities

within a few clusters

Criminal entities, in general, tend towards outlier bahviour.

(degree/active-days)

miner . »

wime |

Shortest Path to CoinJoin

10

— active days

e M

4 14 40 46 87 93 100

= shortest path to C'J

4 14 40 46 87 93 100

— degree/active days

- |‘v — - ‘A—

4 14 40 46 87 93 100

— g utro age

4 14 40 46 87 93 100

24

Unlinkable Payments:
The beauty of stealth addresses

Paper working title:
“ModSAP - A Composition of Modular Stealth
Address Protocols on Public Blockchain” by Toni Wahrstatter et al.
Planned submission venue (May 2023):
IEEE Transactions on Information Forensics and Security

description author discussions-to type category created

Toni Wahrstatter hitos://ett
)) nttps://ethereum-
Private, non- (@nerolation), Matt ' . .
)) magicians.org/t/eip-
Stealth interactive Solomon (@mds1), Standards
. 5566-stealth- ERC
Addresses transfers and Ben DiFrancesco Track

addresses-for-smart-
interactions (@apbendi), Vitalik
. . contract-wallets/10614
Buterin (@vbuterin)

Abstract

This specification defines a standardized way of creating stealth addresses. This EIP enables senders of transactions/transfers to non-
interactively generate private stealth addresses for their recipients that only the recipients can unlock.

Motivation

The standardization of non-interactive stealth address generation holds the potential to greatly enhance the privacy capabilities of Ethereum by
enabling the recipient of a transfer to remain anonymous when receiving an asset. This is achieved through the generation of a stealth address
by the sender, using a shared secret between the sender and recipient. Only the recipient is able to unlock the funds at the stealth address, as
they are the only ones with access to the private key required for this purpose. As a result, observers are unable to link the recipient's stealth
address to their identity, preserving the privacy of the recipient and leaving only the sender with this information.

Specification

The key words “MUST", “MUST NOT", “REQUIRED", “SHALL", “SHALL NOT", “SHOULD", “SHOULD NOT", “/RECOMMENDED", “MAY", and
“OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Definitions:

« A'"stealth meta-address” is a set of one or two public keys that can be used to compute a stealth address for a given recipient.

Probkm defmibn..

Problem definition..

Problem definition..

Problem definition..

% :

L f2

i

Problem definition..

Problem definition..

Could you please
generate a fresh
address for this
interaction, Bob?

Problem definition..

Problem definition..

Problem definition..

But wait..

Wouldn't it be cool to do that
without any prior interaction?

Stealth Addresses

e Alice (non-interactively) generates a
stealth address for Bob. ®
e Alice sends to that stealth address.
e Bob can access the stealth address. ﬁ m
e Looks like Alice sent to some g@

random address.

Stealth Addresses

e Alice (non-interactively) generates a
stealth address for Bob.
e Alice sends to that stealth address.

e Bob can access the stealth address.

e Looks like Alice sent to some

random address.

We get unlikability, but NOT untraceability.

Stealth Addresses

Where are we today and how we got here?

From the beginning..

CoinJoins:
- Dark Wallet
- Samourai
. q q N s~ Nicolas van Whlrlpool
Bitcoin Whitepaper User dByte001n Saberhagant P ot
(pseudonymous accounts) 21ntroduces CryptoNote v. 2.8 i stydariviyir

Stealth Addresses

2011 2016

2013

Semenov, Pertsev &

Adam Ficsor: Storm: Tornado Cash,

ZerolLink Biinz et al.: Zether,

protocol, Starkware: zk-STARKaztech Connect

Biinz et al.: Bowe et al.: HALO zkSync Privacy Pools,
Bulletproofs Railgun HOPR Protocol

2018 2020 2022

Oct. 2013

Launch oAHrst mggr‘]sgl 201 5

2008

- BitcoinFog Peter Todd: Bitcoin Monero Launch,

- BitLaundry CoinJoins, Ben-Sasson et al.: company:
- Blockchain.info’' Shared Parno et al.: Pinocchio Zerocash ZCash
Send,

Bitansky et al.: SNARKS

2017

Electric Coin

2019

Wasabi CoinJoin
Wallet

2021 2023

Aztech 1, zk-EVMs,
ScopelLift’'s Umbra, EIP-5564:
Secret Network Stealth Addresses

From the beginning..

Welcome, Guest. Please login or register

News: Latest Bitcoin Core release: 24.0.1 [Torrent]

Bitcoin Forum > Bitcoin > Development & Technical

Pages: [1]

ByteCoin (OP)
Sr. Member

&

Activity: 416
Merit: 277

a

User "Bytecoin®
introduces
Stealth Addresses

2013

Bitcoin Whitepaper
(pseudonymous accounts)

2011

Launch o‘AHrst m%(grl1

BitcoinFog
- BitLaundry
Blockchain.info'
Send,
Bitansky et al.: SNARKS

2008

CoinJoins,

Shared

Oct. 2013

Peter Todd: Bitcoin

Parno et al.: Pinocchio Zerocash

April 06, 2023, 06:54:28 AM

| [search

Discussion > Untraceable transactions which can contain a secure message are inevitable.

print

Untraceable transactions which c:
April 17, 2011, 02:34:24 AM

ontain a secure message are inevitable.

There is a problem with bitcoin because transactions are, to a certain extent, traceable. Also, it seems to be desirable to be able to pass messages between sender and recipient. This post outiines a simple method of implementing untraceable transactions
to which either party can attach messages. This type of transaction will be propagated across the network and incorporated into blocks just like a normal transaction because to all observers (except the sender and intended recipient) it is indistinguishable
from a normal transaction. It's not immediately obvious that Bitcoin could easily be altered to prevent this new type of transaction if the consensus was that it was undesirable.

Prerequisite: The recipient's address needs to have a publicly visible public key or alternatively the sender needs to have independent knowledge of the public key. In normal circumstances, this means that the recipient needs to have spent some of the
coins sent to that address whereupon their public key is in the block chain

Step 1: The sender performs his side of a Diffie-Hellman key exchange by multiplying the recipient's public key by his private key.
Step 2: The sender uses the hash of the resulting point as the secret key to generate another address termed the "transfer” address.
Step 3: The sender sends the bitcoins to the transfer address (plus multiples of 0.01BTC if message transmission in step 4 is desired).

Step 4: If a message transmission to the recipient is desired, the sender prepares one or more message bearing "k" values instead of random numbers. The messages m is encrypted (xor will do) with the hash of the concatenation of the secret key for the
transfer address with a sequence number starting with zero. The resulting k values are used by the sender for the transfer of 0.01BTC from the transfer address to some other addresses until the message is complete.

Step 5: The recipient monitors the network or block chain for public key revelations ie the first spend from a new address. When a new public key is detected the recipient multiplies the public key point by their secret keys for their public receiving addresses.
Step 6: The recipient uses the hashes of the resulting points as the secret keys to generate candidate transfer addresses and monitors the block chain for transactions to these addresses.

Step 7: The recipient notices that the transaction crediting the “transfer” address matches the one of the addresses calculated in step 6

Step 8: If there are any transactions from the transfer address, the recipient hashes the secret key with a trial sequence number and decrypts the "random” k parameter to recover the message.

Step 9: As both the recipient and the sender know the secret key to the transfer address, the recipient takes ownership of the coins if they wish to by transferring them (possibly in combination with other coins) to one or more new addresses. The recipient
can attach a number of messages readable by the sender to these transactions using the methods of step 4.

Semenov, Pertsev &
Storm: Tornado Cash,
Biinz et al.: Zether,

CoinJoins:
Dark Wallet
Samourai
Whirlpool
JoinMarket
Tumblebit

2016

Adam Ficsor:
ZerolLink
protocol,
Biinz et al.:
Bulletproofs

2018

Nicolas van
Saberhagen:
CryptoNote v. 2.0

_ Bowe et al.:

HALO zkSync

Railgun

2020

2017

Electric
Company:
ZCash

2019

Wasabi CoinJoin
Wallet

2021

Aztech 1,

2015

Monero Launch,
Ben-Sasson et al.:

Coin

Secret Network

Starkware: zk-STARK§ztech Connect
Privacy Pools,
HOPR Protocol

ScopeLift’'s Umbra, EIP-5564:
Stealth Addresses

From the beginning..

o

[Bitcoin-development] Stealth Addresses The Mail Archive Q/

“

Peter Todd Mon, O 2014 0

* Abstract

A Stealth Address is a new type of Bitcoin address and related # The Mail Archive home
scriptPubKey/transaction generation scheme that allowers payees to S
publish a single, fixed, address that payors can send funds efficiently, bitcoin-development - all messages
privately, reliably and non-interactively. Payors do not learn what f] bitcoin-development - about the list
other payments have been made to the stealth address, and third-parties ;
g : 2 < ¢% Expand

learn nothing at all. (both subject to an adjustable anonymity set)

¢ Previous message

* Acknowledgments Next message

Credit goes to ByteCoin for the original idea. (1) Gregory Maxwell, Adam
Back, and others on #bitcoin-wizards contributed valuable input on the
implementation. Finally thanks goes to Amir Taaki for input on the
general idea of stealth addresses and use-cases.

CoinJoins: Semenov, Pertsev &
- Dark Wallet Adam Ficsor: Storm: Tornado Cash,
- Samourai ZeroLink Biinz et al.: Zether,
: : . S T Nicolas van Whirlpool protocol, Starkware: zk-STARK&ytech Connect
?1tco;n Whitepaper) gﬁ::odEZZECOIn Saberhagen: - JoinMarket Biinz et al.: Bowe et al.: HALO zkSync Privacy Pools,
pseudonymous accounts . 2. _ ; i HOPR Protocol
Stealth Addresses CryptoNote v. 2.0 Tumblebit Bulletproofs Railgun

2011 2013 2016 2018 2020 2022

2008

Launch oARFsr w2011 Oct. 2013 2015 2017 2019 2021 2023

- BitcoinFog Peter Todd: Bitcoin Monero Launch, Electric Coin Wasabi CoinJoin Aztech 1, zk-EVMs,

- BitLaundry CoinJoins, Ben-Sasson et al.: company: Wallet ScopeLift’'s Umbra, EIP-5564:

- Blockchain.info' Shared Parno et al.: Pinocchio Zerocash ZCash Secret Network Stealth Addresses
Send,

Bitansky et al.: SNARKS

From the beginning..

CryptoNote v 2.0

Nicolas van Saberhagen

October 17, 2013

1 Introduction

a trust model. Today, the user base of electronic cash
attracted to low fee d the anonymity provided
nts value its predicted and decentr d emission. Bitcoin has
proved that electronic cash can be as simple as paper money and as convenient as
credit s.

Unfortunately, Bitcoin suffers from several deficiencies xample, the system’s distributed
nature is inflexible, p: iting the implementation c 3 2 s until almost all of the net-
work ate their . Some critical flaws that cannot be fixed rapidly deter Bitcoin’s

ition. In such inflexible models, it is more efficient to roll-out a new project
inal project.

1d propose solutions to the main deficiencies of Bitcoin. We believe

count the solutions we propose will lead to althy competition

h systems. We ur own electronic cash, “CryptoNote™,

Semenov, Pertsev &
Storm: Tornado Cash,

CoinJoins:

- Dark Wallet Adam Ficsor:

Bitcoin Whitepaper

- Samourai ZeroLink Biinz et al.: Zether,
U “Bvtecoin" Nicolas van Whirlpool protocol, Starkware: zk-STARKgytech Connect
(") ii::oduZeECOIn Saberhagen: - JoinMarket Biinz et al.: Bowe et al.: HALO zksync Privacy Pools,
pseudonymous accounts . 2. _ ; i HOPR Protocol
Stealth Addresses CryptoNote v. 2.0 Tumblebit Bulletproofs Railgun

2011 2013

2016

2018

2020 2022

2008 Launch o‘AHrst mg(grl1

Oct. 2013

2015

2017

2019 2021

2023

BitcoinFog Peter Todd: Bitcoin Monero Launch, Electric Coin Wasabi CoinJoin Aztech 1, zk-EVMs,
- BitLaundry CoinJoins, Ben-Sasson et al.: company: Wallet ScopeLift’'s Umbra, EIP-5564:
- Blockchain.info' Shared Parno et al.: Pinocchio Zerocash ZCash Secret Network Stealth Addresses
Send,

Bitansky et al.: SNARKS

From the beginning..

CoinJoins: Semenov, Pertsev &
- Dark Wallet Adam Ficsor: Storm: Tornado Cash,
- Samourai ZeroLink Biinz et al.: Zether,
S . . . Nicolas van Whirlpool protocol, Starkware: zk-STARK&ztech Connect
Bitcoin Whitepaper) gi::odEZZECOIn Saberhagen: - JoinMarket Biinz et al.: Bowe et al.: HALO zkSync Privacy Pools,
(pseudonymous accounts . 2. _ . i HOPR Protocol
Stealth Addresses CryptoNote v. 2.0 Tumblebit Bulletproofs Railgun

2011 2013 2016 2018 2020 2022

¢

Launch oARFsr w2011 Oct. 2013 ; 2019 2021 2023

2008

- BitcoinFog Peter Todd: Bitcoin i i Wasabi CoinJoin Aztech 1, zk-EVMs,

- BitLaundry CoinJoins, ben-sSasson et al.: : Wallet [ScopeLift’s Umbra,]EIP—5564:

- Blockchain.info’ Shared Parno et al.: Pinocchio Zerocash Secret Network Stealth Addresses
Send,

Bitansky et al.: SNARKS

From the beginning..

description author discussions-to status type category created

Toni Wahrstatter
Private, non- (@nerolation), Matt m
Stealth interactive Solomon (@mds1), Standards
. @) 55 Draft ERC
Addresses transfers and Ben DiFrancesco Track
interactions (@apbendi), Vitalik

Buterin (@vbuterin)

Abstract

This specification defines a standardized way of creating stealth addresses. This EIP enables senders of transactions/transfers to non-
interactively generate private stealth addresses for their recipients that only the recipients can unlock.

Motivation

The standardization of non-interactive stealth address generation holds the potential to greatly enhance the privacy capabilities of Ethereum by
enabling the recipient of a transfer to remain anonymous when receiving an asset. This is achieved through the generation of a stealth address
by the sender, using a shared secret between the sender and recipient. Only the recipient is able to unlock the funds at the stealth address, as
they are the only ones with access to the private key required for this purpose. As a result, observers are unable to link the recipient's stealth
address to their identity, preserving the privacy of the recipient and leaving only the sender with this information.

Specification

The key words “MUST”, “MUST NOT", "REQUIRED", “SHALL", “SHALL NOT", “SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and
“OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Definitions:

« A'"stealth meta-address" is a set of one or two public keys that can be used to compute a stealth address for a given recipient.

CoinJoins: Semenov, Pertsev &
- Dark Wallet Adam Ficsor: Storm: Tornado Cash,
- Samourai ZeroLink Biinz et al.: Zether,
: : . S T Nicolas van Whirlpool protocol, Starkware: zk-STARK&ytech Connect
?1tco;n Whitepaper) gﬁ::odEZZECOIn Saberhagen: - JoinMarket Biinz et al.: Bowe et al.: HALO zkSync Privacy Pools,
pseudonymous accounts . 2. _ ; i HOPR Protocol
Stealth Addresses CryptoNote v. 2.0 Tumblebit Bulletproofs Railgun

2011 2013 2016 2018 2020 2022

Launch oARFsr w2011 Oct. 2013 2015 2017 2019 2021 2023

2008

BitcoinFog Peter Todd: Bitcoin Monero Launch, Electric Coin Wasabi CoinJoin Aztech 1, zk-EVMs
- BitLaundry CoinJoins, Ben-Sasson et al.: company: Wallet ScopeLift’'s Umbra, EIP-5564:
- Blockchain.info' Shared Parno et al.: Pinocchio Zerocash ZCash Secret Network Stealth Addresses
Send,

Bitansky et al.: SNARKS

How does 1t work?

How does 1t work?

How does 1t work?

7)B

f

NEINEDY

How does 1t work?

7)B
&

(2) Alice does:
s =a*8B

sh = hash(s)
StPk = sh *# G + B
StAddr = address(stPk)

9

How does 1t work?

(2) Alice does:
s =a*8B

sh = hash(s)
stPk = sh * G + B
stAddr = address(stPk)

(3) Alice sends funds to stAddr which is
different from address(B) and publishes A.

How does 1t work?

9

(4) Bob parses all
announcements.

(2) Alice does:
s =a*8B

sh = hash(s)
stPk = sh * G + B
stAddr = address(stPk)

(3) Alice sends funds to stAddr which is
different from address(B) and publishes A.

How does 1t work?

iilll

(4) Bob parses all
announcements.

(5) Bob does:
For X in { A, B, C, .. }:

(2) Alice does: s=X*b
s =23 *B sh = hash(s)
stPk = sh * G + B

sh = hash(s) =
stPk = sh * G + B stAddr = address(stPk)

stAddr = address(stPk)

Bob can compute the private key

(3) Alice sends funds to stAddr which is to the stealth address: b + sh

different from address(B) and publishes A.

How does 1t work?

9 I

(4) Bob parses all
announcements.

(5) Bob does:
For X in { A, B, C, .. }:

(2) Alice does: s=X*%*b
s =23 *B sh = hash(s)
stPk = sh * G + B

sh = hash(s) =
stPk = sh * G + B stAddr = address(stPk)

stAddr = address(stPk) sh * G + B = (b+sh) * G

Bob can compute the private key
for the stealth address: b + sh

(3) Alice sends funds to stAddr which 1s
different from address(B) and publishes A.

How does 1t work?

(4) Bob parses all
announcements.

(5) Bob does:
For X in { A, B, C, .. }:

(2) Alice does: s =X * sc
s =a * Sc sh = hash(s)
stPk = sh * G + Sp

sh = hash(s) =
stPk = sh * G + Sp
stAddr = address(stPk)

stAddr = address(stPk)

Bob can compute the private key

(3) Alice sends funds to stAddr which is for the stealth address: sp + sh

different from address(Sp) and publishes A.

So what about EIP-
55647?

EIP-5564

Stealth Addresses = Stealth Addresses

EIP-5564

Stealth Addresses = Stealth Addresses
e Many different possibilities for Stealth Address protocols:
o Different Elliptic Curves
B Secp256kT

B Secp256rT
|

o Elliptic Curve Pairings

o Lattice-based

EIP-5564

° “Stealth address and key management techniques in blockchain systems” - Courtois & Mercer (2017)

° “Faster dual-key stealth address for blockchain-based internet of things systems” - Fan (2018)

° “A new stealth address scheme for blockchain” - Fan et al. (2019)

° “A lattice-based linkable ring signature supporting stealth addresses” - Liu et al. (2019)

° “Blockchain Stealth Address Schemes” - Yu (2020)

° “PDKSAP: Perfected double-key stealth address protocol without temporary key leakage in blockchain” -
Feng et al. (2020)

° “EDKSAP: Efficient Double-Key Stealth Address Protocol in Blockchain” - Feng et al. (2021)

° “A privacy-preserving data transfer in a blockchain-based commercial real estate platform using random
address generation mechanism” - AbdulKadar & Kumar (2022)

° “A Hybrid Design of Linkable Ring Signature Scheme with Stealth Addresses” - Li et al. (2022)

EIP-5564

Stealth Addresses = Stealth Addresses
e Many different possibilities for Stealth Address protocols:
o Different Elliptic Curves
- -
B Secp256kT y [

EC Lattice "
B Sec pz 561 Pairing based bhased ‘
DKSAP |cf. EDKSAP | SCh€mes
. IIIIIc 7
Registry contract /‘

EIP-5564 Messenger contract

o Elliptic Curve Pairings
o Lattice-based

e Standardization is key

EIP-5564

contract IE

event Announcement (
uint256 indexed schemeld,
address indexed stealthAddress,
bytes ephemeralPubKey,
bytes metadata

dev Called by integrators ar Announcement event.
function announce (
uint256 schemeld,
address stealthAddress,
bytes memory ephemeralPubKey,
bytes memory metadata

external

emit Announcement(schemeld, stealthAddress, ephemeralPubKey, metadata);

Scheme ID to indicate the specific stealth

address protocol.

Stealth Address to enable recipient to
quickly discover their stealth addresses
without RPC calls.

Ephemeral Public Key to enable recipients
finding their stealth address and compute

the stealth private key.

Metadata for additional information to

improve UX.

EIP-5564

Stealth meta-address format:

st:eth:0x<spendingKey><viewingKey>

st:eth:0x0385b15e0d16672bbe2b215b86742ee6baBb1f89
b01f35e4dc30ef4dd2eec967770387de997ce72ad74be3072
e02caba31f187c6306101047f9f81ecc626c4abebc3

EIP-5564

Stealth meta-address format:

st:eth:0x<spendingKey><viewingKey>

st:eth:0x0385b15e0d16672bbe2b215b86742ee6babb1f89
b01f35e4dc30ef4dd2eec967770387de997ce72ad74be3072
e02caba31f187c6306101047f9f81ecc626c4abebc3

EIP-5564

Stealth meta-address format:

st:eth:0x<spendingKey><viewingKey>

st:eth:0x0385b15e0d16672bbe2b215b86742ee6babb1f89
b01f35e4dc30ef4dd2eec967770387de997ce72ad74be3072
e02caba31f187c6306101047f9f81ecc626c4abebc3

Prefix: st:eth:0x

Compressed PubKey I:
0385b15e0d16672bbe2b215b86742eeb6babb
1f89b01f35e4dc30ef4dd2eec96777

Compressed PubKey II:
0387de997ce72ad74be3072e02caba31f1
87c6306101047f9f81ecc626c4abebc3

EIP-5564

Stealth meta-address format:

st:eth:0x<spendingKey><viewingKey>

st:eth:0x0385b15e0d16672bbe2b215b86742ee6babb1f89
b01f35e4dc30ef4dd2eec967770387de997ce72ad74be3072
e02caba31f187c6306101047f9f81ecc626c4abebc3

EIP-6538:

Ethereum Improvement Proposals

All Core Networking Interface ERC Meta Informational

!
ERC-6538: Stealth Meta-Address Registry O <>

A registry to map addresses to stealth meta-addresses

Authors Matt Solomon (@mds1), Toni Wahrstatter (@nerolation), Ben DiFrancesco (@apbendi), Vitalik Buterin (@vbuterin)

Created 2023-01-24

Find more..

PoC: stealth-wallet.xyz
Tutorial: nerolation.github.io/stealth-utils/

EIP-5564: eips.ethereum.org/EIPS/eip-5564
EIP-6538: eips.ethereum.org/EIPS/eip-6538

https://stealth-wallet.xyz/
http://nerolation.github.io/stealth-utils/
http://eips.ethereum.org/EIPS/eip-5564
http://eips.ethereum.org/EIPS/eip-6538

Behavioural Threats in Decentralized
Federated Learning: A Dynamic Assessment
Approach

Authors: Khan, Sajjad; Gomes Jr., Jorao; Rehman,
Muhammad Habib ur; Svetinovic, Davor

Under review in [EEE Transactions on Dependable and
Secure Computing.

Introduction & Background

* Traditional Machine Learning (Data to Code)
* Federated Learning (Code to Data)
1. Single point of failure/bottlenecks
2. Curious Server
3. Lacks the capability to detect adaptive behaviour

* Decentralized Federated Learning

Research Questions

What are the common issues that hinder the efficiency of the DFL?

Adaptive behaviour is not recognized (only free rider)

How do the existing DFL systems tackle the adaptive behaviour of
participants?

Assuming honest behaviour

incentivizing to behave honest.

How to ensure the correct performance of DFL systems?

Ability to detect/mitigate and quick elimination procedure to avoid confidence
degradation.

Taxonomy of behaviour threats

DFL models

Free-rider
participants

Malicious
participants

Noisy gradients

r

Non-contributing Arbitrary Artificially - .
o s . ’ Poisoned gradients
participants gradients designed gradients

\.

Plagiarize Using less number

gradients of instances

Carefully crafted
instances

It is assumed that Free-riders are only

non-contributing participants.

Competitive
participants

Gradient
substitution

i

Instances with
different
distribution

Proposed architecture

Z0=—>D4w—-—0QmM2D

Programmable Distributed Ledger

Reputation Score

Reputation Score

Reputation Score

Reputation Score

Reputation Score

Reputation Score

05 |05|05 |05

06 |06 |06 |06

P1_ P2 P3 P4

P1_ P2 P3 P4

10 | 10 |10 [10

10 | 1.0 | 1.0 | 0.65

10 | 1.0 | 1.0 |0.45

10 [10 [1.0 }{

P1_ P2 P3 Pa

P1_ P2 P3 P4

P1 P2 P3 P4

P1__P2 P3 P4

A

A

y y v v v
Dynamic Reputation Assessment
P1 P2 P3 P4 1 P1 P2 P3 P4 1 1 P1P2P3 P4 1 P1 P2 P3 P4 : P1 P2 P3 P4 :
P10000/&/IP10000/&/I 1p0]0]0]0 -p1ooo1/&/.P1ooo1/£v‘. P1 P2 P3 /&/
P20]0]0]0 yPaojoJo]o X yPZofofoo y P20 [0]0]1 1P20 001 1P10]0]0
P30|0[0]0 yP30fojofo0 y Sttty pr3ofofo]o y P3O0 [0 |1 = R 'P20(0]0
o ToToTo] JX rdoToloTo] JX | \paoToToTo] SX |\ rdoTotolo] SX tedoTooto] SX tedotoo] S
Behaviour evaluation : Behaviour evaluation : : Behaviour evaluation : Behaviour evaluation I Behaviour evaluation 1 Behaviour evaluation
\ 1 A 1 1 \ 1 A 1 A ' A
1 1 1 1 ' '
t t + t - N
1 1 1 y 1))
=1 N=2 N=7 | N= N=9
) P2 B2
A A A A A \
P3 P4 P3 P4 P3 P4 P3

[

Decentralized Federated Learning

Behavioural evaluation algorithm

Algorithm 1 Behaviour evaluation algorithm

Input: accuracy_resulls, o

Output: malicious_index

malicious_report < ()

mean < mean(accuracy_results)

std + std(accuracy_resulls)

lower_limil <+ mean — « X std

fori € (0, len(accuracy_results)) do
if accuracy_results|i] < lower_limil then

malicious_index <+ malicious_index U1

end if

end for

10: return malicious_index

Page 5

Experiments

Accuracy

Accuracy
(]
o
N

MMNIST

—e— P-3 Free Rider CFL
—+— P-3 Free Rider DFL
—»— P-5 Free Rider CFL
—%— P-5 Free Rider DFL

—e— P-3 Free Rider CFL
—#+— P-3 Free Rider DFL
—»— P-5 Free Rider CFL
—»— P-5 Free Rider DFL

T T

5 10

15

20

25

30

0.981

0.96 1

0.941

0.92 1

0.90 1

0.88 1

0.86

0.90

0.88 1

0.86 1

0.841

0.821

0.80

MMNIST

P-3 Malicious CFL
P-3 Malicious DFL

P-5 Malicious CFL
P-5 Malicious DFL

Yt

-

P-3 Malicious CFL

——
—+— P-3 Malicious DFL
—»— P-5 Malicious CFL
——

P-5 Malicious DFL

10 15

20

25 30

Experiments

MMNIST MNIST
1.20 1.90
1.181 1.85-
, 1167 1.80 1
S

1.14 4 1.754
1.12 1

1.70 4
1.10

1.654

1 5 10 15 20 25 30
Rounds Rounds
Free Rider Malicious
mmm Round N
MMNIST MNIST B Round N+1 MMNIST MNIST
0.4 - 0.4 - 0.4 - 0.4 -
0
o
>
ot 0.2 1 0.2 - 0.2 1 0.2 1
<
1234567 8910 1234567 8910 1234567 82910 1234567 8910

Page 7

Why CFL fails.

TABLE 1
Example of the impact of malicious gradients on the users’ confidence.
Read UID as a User ID and R as Round

User 6 User 9
R1 R2 R3 R1 R2 R3
0.299 0.164 0.110 | 0335 0.234 0.190
0.296 0.163 0.110 | 0330 0.232 0.189
0.198 0.119 0.109 | 0.261 0.207 0.184
0299 0.159 0.110 | 0334 0228 0.188 How confidence level degrades
0.206 0.123 0.109 | 0.274 0.209 0.186
0.296 0.166 0.110 | 0334 0.234 0.193

0298 0.161 0.110 | 0.333 0.227 0.188
0298 0.169 0.110 | 0337 0237 0.191 100{ ™M Malicious EEE Honest
0299 0.162 0.110 | 0333 0231 0.191
0304 0.179 0.110 | 0335 0239 0.196

-
\cocwc\mu:-uow»—ua

i
)

Percentage recorded

1 2 3 4 5 6
Rounds

How it works.

Input: score_meltrics, malicious_reports
Require: n_participants, reputations
Output: Updated reputation scores

1. P actor < 1
2: 7‘efpo7‘l/_vol,es + [0] * n_participants 1.0 —#— Proposed dynamic
3: for report € malicious_reports do —*— Static decrease 0.1
4 for id € report do @ 0.9 —— Static decrease 0.2
5 report_votes[id] < report_votes|id] + 1 B
6 end for O
7: end for »n 0.8
8: for id € report_voles do S
9 voles + Ieportvotesfid] 2 0.7]
n_participants +
10: if votes > 0.5 then B
11: for results € score_melrics do > 0.61 I
12: mean < mean(resulls) % 1
13: value +— resulls|id] o 0.5
14: tmp_Practor < ;’,Zl;‘; ---
15: if Proctor > tmp_Ppactor then 0.4 ¥
16: Pfa(:tor — I/"np_Pfa(:tor 0 2 4 6 8
17: end if Rounds
18: end for
19: end if
20: end for Compal'ison to commmon ways
21: for id € report_votes do o o
2 oles < Teportvoteslid] of reputation decreasing
n_participants
23: if voltes > (0.5 then
24: repulations(id] < reputations[id] X Pfactor
25: else
26: reputations[id] < min(1, reputations[id] + 0.1)
27 end if

28: end for

Evaluating Honest/Adaptive behaviour.

Free Rider

1.0
[0
¢ 0.8 P3 . ph
c P4 - PO
o 0.7 P5 —« P10
bt
.
5 0.6 '
o r)
o Y e
04 1 12 16
0 Rognds ..
Malicious
1.0 —n s o » PR
0.8 - P1 4 P6
b5 = bé
. e S po
How it worked. 0.6 r P4 PO
0.4
0.2
0 4 8 12 16

Rounds

And 3 more recent works under review

* OpenFL: Ethereum-Based Decentralized Federated Learning for
Trustworthy Collaboration

* Crypto-economic Blockchains Under Geopolitical Stress: Analyzing
User Behavior During the Acute Stage of Russia—Ukraine Conflict

* Fortifying the Blockchain: A Systematic Review and Classification of
Post-Quantum Consensus Solutions for Enhanced Security and
Resilience

Blockchain and Al: A Promising Direction

* Al-driven smart contracts and decision-making

* Enhanced security and fraud detection

* Autonomous organizations and decentralized applications
* Federated learning for improved privacy

* Challenges: trust, ethics, and system manipulations

Blockchain and loT: Unlocking New
Possibilities

* Decentralized l1oT device management and data sharing
* Enhanced security and data privacy

* Supply chain traceability and transparency

 Smart homes, cities, and infrastructure
* Challenges: scalability, interoperability, and standards

Engineering Trust in Blockchain Systems

* Secure and privacy-preserving protocols

* Transparent governance and decentralized decision-making
* Regulatory compliance and legal frameworks

* Reputation systems and identity management

* Interoperability and standardization

Censorship-Resistant Federated Learning

* Decentralized machine learning on permissionless blockchains
* Privacy-preserving data sharing and collaboration

* Resilience against data poisoning and sybil attacks

* Incentivizing honest participation and contribution

* Challenges: scalability, efficiency, and incentives

Blockchain System Turbulences

* Market fluctuations and speculation

* lllegal activities and system manipulations

» Geopolitical conflicts and regulatory changes
* Technological innovations and breakthroughs
* Public perception and media influence

Engineering Mechanisms to Mitigate
Turbulences

* Market mechanisms for stability and price discovery

* Machine learning for prediction and early warning systems
* Adaptive governance and responsive regulation

* Security and privacy enhancements

* Community engagement and education

Increasing Trustworthiness and Reliability

 Building on secure and privacy-preserving foundations
* Transparent governance and decision-making

* Collaboration with regulators and legal frameworks

* Enhancing system resilience and adaptability

* Encouraging research and development in critical areas

Conclusion

* Blockchain, Al, and loT offer significant potential for innovation
* Addressing engineering challenges to build trustworthy systems
* Understanding and mitigating blockchain turbulences

* Increasing public acceptability and maximizing benefits

* Ongoing research and collaboration for a more resilient future

Thank you! See you at the panel |ater!

@ Here are three jokes that combine blockchain, Al, and quantum computing themes:

l. Why did the Al-powered quantum computer invest in cryptocurrencies?
Because It calculated that the odds of success were both one and zero at the same time!
2. What do you get when you cross a blockchain enthusiast, an Al researcher, and a
quantum computing expert?
A decentralized, self-learning, and superpositioned party!
3. Why was the Al-driven quantum blockchain so popular?
Because it could simultaneously verify transactions, learn from its mistakes, and exist in

multiple states, all while keeping a cryptic sense of humor!

